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Higher-order difference schemes are considered for the numerical solution of 
Schroedinger’s radial equation. They are a family of difference equations which are 
extensions of the well-known Numerov difference equation and give highly convergent 
approximate solutions, the least being O(P) compared to O(h4) in the Numerov equa- 
tion. An algorithm to find eigenvalues and eigenfunctions using one-directional “shoot- 
ing” is discussed. The stability and convergence of these schemes are also discussed. 
An example and numerical results are given, and the order of convergence which is 
estimated from the results is found to be close to the theoretical value. 

1. INTRODUCTION 

In diatomic molecules, the problem of finding the eigenvalues and eigenfunctions 
can be simplified by the Born-Oppenheimer approximation. With this approxi- 
mation, the Schroedinger equation reduces to a radial equation which governs 
the vibrational and rotational states of a diatomic molecule. Such problems can 
be formulated as to find the couple (E, y(r)) such that 

Y”(r) = W(r) - El Y(r), O<r<co, 

where k = 8.rr2p/h2, subject to the “boundary” conditions 

Y(O) = 0, 
l&y(r) = 0. 

(0 

(24 
GW 
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A normalization condition may be added resulting simply in multiplying y by 
a constant. 

Typically, problem (l)-(2) is a singular Sturm-Liouville system, and theoretical 
knowledge about the point spectrum is available (see, for example [l, pp. 107-1281). 
In particular, if the potential V(r) vanishes as r tends to infinity, the point-spectrum 
is contained in the negative part of the energy axis. Closed forms or series solutions 
of the problem are available only in few cases of simple potentials [2, 31, and it 
becomes necessary, therefore, to look for approximate solutions. This is usually 
done as follows. The differential equation is replaced by some suitable difference 
equation, and condition (2b) is replaced by some finite end-point boundary condi- 
tion such as y(r) = 0, where ? is a “large” positive number. For a difference 
scheme to be useful, it has to be stable and accurate, i.e., not sensitive to small 
changes due to round-off errors and provides a good approximation to the exact 
solution. In recent years, the trend has been towards higher-order approximation 
schemes, and the methods proposed in Section 2 are of the higher-order type. 
Related aspects of convergence and stability of these schemes are studied in 
Section 3. Algorithmic implementation is finally discussed in Section 4. In Section 5, 
we give a numerical example and results. 

2. DIFFERENCE EQUATIONS 

The Schroedinger radial equation (I) can be put in the more general form 

.f = f(r, ~9. (3) 

If f(r, u) is linear in y, then (3) reduces to (1). To derive difference equations 
corresponding to (3), one can either (i) proceed directly from (3) by noting that 
it does not contain y’, or (ii) transform (3) into a system of two first-order equa- 
tions to which one applies numerous existing methods. As in [4, Chap. 61, we 
shall take the first point of view. 

Consider a uniform partition of the finite interval (0, F). 

0 = r, < rl = h < *a* < rb = kh < ... < r, = Nh = i;. 

We shall make use of Taylor’s formula, assuming henceforth that f and y(r) are 
sufficiently smooth. Such method has been extensively used [5, p. 620 et seg.]. 

Taylor’s expansion of y(ri+J at r = ri gives 

Ari+l) = y(rJ + hy’(rJ + (h2/2 !I u”(ri> + ..a . (4) 

Replacing h by -h in (4) and adding to (4), we obtain 

y(ri+l> - 2y(rJ + y(ri-,) = (2h2/2 !) y”(rJ + (2h4/4!) yf4)(ri) + ... . (5) 
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Differentiating (5) twice, we obtain 

Y”(‘~+~) - 2y”(r,) + y”(r,vl) = (2h2/2!) I’m’ + (2h4/4!) I’m’ + --- . (6) 

Elimination of yt4)(ri) from (5) and (6) gives 

Ytri+l) - 2Y(ri) + YCri-1) 

= (h2/12)[y”(ri+d + lOy”(rJ + y”(rp-r)] - (3hs/6!) y’6’(ri) + O(P). (7) 

Using (3) and eliminating sixth-order terms in (7), one obtains Numerov’s difference 
scheme [6] 

Yi+1 - 2Yi + Yi-1 = (h2/12)(si+l + lo& +A1)s (8) 

where yi denotes the approximation of y(rJ and fi denotes the approximation of 
f(ri , y(r,)). Numerov’s difference equation (8) is a fourth-order, two-step method 
which is generally implicit and is reducible to an explicit equation whenfis linear 
(as in the case of the radial equation). 

Higher-order schemes can be obtained by two methods: (i) by keeping the 
same number of steps and then using the derivatives off (i.e., fT , f, ,fru , etc.) if 
these are easily obtained, or (ii) by increasing the number of steps if one uses 
f(x, y) only. In general, the potential V(r) may be given discretely, and hence the 
derivatives are difficult to obtain. It is certainly more practical to extend the size 
of the interval and use only function values off. 

Replacing h by 2h in (5) and (6), we obtain 

Y(ri+J - 2yCrJ + Y(ri-2) = (2(2h)‘/2 !) Y”(rJ $- (2(2hI14/4 !) Yc4’(ri) 
+ (2(2h)8/6!) Y@‘(Q) + -*a . (9) 

y”(ri+g) - Zy”(rf) $ y”(l’i-2) = (2(2h)2/2!) yf4’(ri) + (2(2h)4/4!) y”‘(ri) + **. s (10) 

Eliminating I from (9) and (IO), and then eliminating y’“‘(ri) from the 
resulting equation and from (7), we obtain 

YCri+2) - 2Ytri) + YCri-2) 

= (h2/15)[Y”(ri+J + 16y"(r,+d + 26Y”(ri) + 16Y”(ri-J + y"(r41 + O(h*), 
(11) 

and 

y<+2 - 2yi + yi-2 = (h2/15)(f,+2 + 16&+1 + 265, + 165-I +.&-a) + V-e * (12) 

This is a sixth-order difference equation. By extending this derivation to 2k inter- 
vals, one obtains a general form for these difference schemes 

Yi+k - 2.Yi + y&k = h2 i Ui(fi+j +fi-,)- 
j=O 

(13) 
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The stability and convergence of these schemes will be discussed in the next 
section. 

3. STABILITY AND CONVERGENCE 

From the derivation of these schemes, it can be easily shown, by using Taylor’s 
formula, that these are consistent 2k-step methods of order 2k + 2; i.e., if y(r) 
is a solution of (3), then 

ytri+k) - 2ytrJ + Arid 

(14) 

To show that the schemes (13) are stable, we shall consider the stability or root 
condition [4, p. 3001: the modulus of any root of the polynomial which is, in our 
case, 

p(z) = zZk - 22” + 1, 

may not exceed 1 and the multiplicity of the roots with moduli 1 may not exceed 2. 
This condition is easily verified in our case since this polynomial is equal to 
(z” - 1)2. Thus, every root has modulus 1 and multiplicity 2. Moreover, the 
difference equations (13) are optimal since the maximum order of a 2k-step method 
cannot exceed 2k + 2. 

Since the schemes (13) are consistent and stable, then they are convergent. 
Moreover, the order of convergence is 2k + 2, [4, pp. 314-3151. 

4. PRACTICAL CONSIDERATIONS 

The implementation of difference schemes to solve two-point boundary value 
problems and, in particular, the Schroedinger equation is widely discussed by 
Fox [7, pp. 72-941. The existing methods are either direct, using matrix methods, 
or indirect, using “shooting methods.” It is recognized [7, pp. 58-721 that shooting 
methods are simpler, due to smaller storage and programming, and we have thus 
preferred their use. The simplest shooting method is the one-directional (outward) 
method. It has been recently formalized by Bhatia and Madan [8]. Due to the 
exjstence of undesired “extraneous” solutions which grow to a significant value 
at large r, Cooley [9] prefers to shoot from both ends of the interval (0, r); the 
matching point is chosen inside that interval; a correction formula is used to 
estimate E for each trial solution. 



154 HAJJ, KOBEISSE AND NASSIF 

We have, for simplicity, chosen a one-directional outward shooting method. 
The present method does not require any a priori knowledge about the solution 
at r. Moreover, this method, as will be seen, has exactly the same accuracy as 
that of Cooley’s method, if the same difference equation is used. The experimental 
results of the present method and the very recent theoretical considerations of 
Bhatia and Madan were developed independently and are essentially similar. One 
difference is that we have developed a bisector algorithm to pinpoint the eigen- 
value quickly. Another development is how to choose a “convenient” ?. Our main 
interest is to find the eigenvalues. For this purpose, the normalizing of y is not 
needed. However, if one is also interested in finding the normalized eigenfunctions, 
a point r, has to be found as will be explained. 

In using (8) or (12), one faces a starting-value problem. Indeed, (8) and (12) 
are, respectively, two- and four-step methods. In (8), we put y, = 0 and choose 
y, arbitrarily (about lo-12). As can be seen from (8), y1 is a factor of the solution 
and will be adjusted later to normalize y. In (12), however, one needs y, , y1 , y2 
and y3 before starting the method. This problem can be solved by using (8) to 
find Y, and y3, and by decreasing the step size on (0, 3h) for the sake of 
accuracy. 

To compute En and the corresponding eigenfunction y,, , we start by a first 
estimate En0 of En . If the solution has the correct number of zeros corresponding 
to En , then En0 is acceptable. The eigensolution yn does not tend to zero at large r. 
After it approaches the r axis as expected, it either (i) crosses the r axis (at y,,J 
and goes to infinity, or (ii) reaches a minimum distance (at r,J, turns, and goes 
to infinity with a sign apposite to that of the first case. The first and second cases 
depend on whether E,,O is larger or smaller than E, . As the estimated E, approaches 
the exact En , r, increases. The interval (0, y,J is where yn is “valid.” This interval 
is used in integrating yn2 for normalization. The part of yn beyond r, may be 
called the “tail.” The reason that the tail goes to infinity is the existence of extra- 
neous solutions. Since y tends to zero asymptotically, the asymptotic solution is 
the sum of two independent solutions, e-sr and esr, where s is the positive square 
root of -E. The second solution is the undesired extraneous solution and its 
coefficient vanishes if E # En. However, due to small errors in estimating E,, 
and in the computing scheme, this coefficient (and esr) grows as r increases. 

The point P is chosen on the tail not too near r, so that r,,, would not increase 
beyond T;. The point F is not chosen too far from r, in order that y,(F) might not 
have strange behavior due to accumulated error. Next, En0 is increased by a small 
amount e, . If 1 y,(r’)l decreases, then e, is added to En0 several times until y,(F) 
changes sign; if 1 y,(?);)l increases, then e, is subtracted from E,O until y,(F) changes 
sign at, say, E,,l. The next choice of E is 

En2 = a(Eno + E,l). (15) 
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This cycle is repeated until the accuracy of the computer is overshot. 

ei = +e+, , (1W 
E;+2 = &(Eni + E;+‘), (16b) 

where ei is the error. About 20 such iterations are usually done (automatically 
as indicated above) to compute En to 9 or 10 significant figures. 

The above method can also be applied, with equal ease, to find the eigenvalues 
and eigenfunctions of any parameter that may be contained in the expression 
of V(r). In future work, this advantage may be used to deduce an analytic expres- 
sion for V from the experimental eigenvalues. 

5. NUMERICAL EXAMPLE 

The example is the diatomic molecule Hz+. The potential is a Morse potential [IO], 

V(r) = D[l - exp(--a(r - re))] - D, 

where r, is the equilibrium internuclear distance and D is the dissociation energy; 
r, = 1.9975, a = 0.711248 and D = 188.4355 in units of 2~ a.u. The Morse 
potential allows an analytic solution for the eigenvalues and the eigenfunctions 
which can be evaluated exactly. We shall solve the radial equation numerically 
using (8) and (12) and compare the results with the exact analytic results and with 
Cooley’s results [9]. Cooley used (8) and used the two-directional shooting method. 

The present computations were made on an IBM 1130 computer. The eigen- 
values computed by the present scheme or method using (8) are exactly the same 
as those computed by Cooley. The eigenvalues computed by the present method 
using (12) are presented in Table I where they are compared with the “exact” 
eigenvalues and with those computed by Cooley. The errors which are presented 
in Table I, and which are put in brackets, are also presented in Fig. 1 for more 
clarity. Clearly, the mesh h = l/20 overshot machine accuracy when Eq. (12) 
was used. 

Table II presents the values of the zeroth eigenfunction corresponding to E,, , 
as computed by different methods. The errors (deviations from the exact value) 
are used to estimate the order of convergence of the difference scheme, theoreti- 
cally given as 4 in (8) and 6 in (12). For this purpose, we compute the maximum 
absolute deviation dh . Assuming dh = cha, then dh/dh, = (h/h’)“, giving 

01 = log(d,/d,,)/log(hlh’), 

where h = 0.1 and h’ = h/2 = 0.05. The last row in Table II gives the estimates 
of the order of convergence for each computed solution. As one observes, these 
practical estimates are very close to their respective theoretical values. 

581/16/2-5 
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TABLE I 

Eigenvalues Computed by Different Method@ 

h 0.2 = l/5 0.1 = l/l0 0.067 = l/15 0.05 = l/20 

E,(Sixth-order) 

&, (Fourth-order) 

fi (Sixth-order) 

El (Fourth-order) 

E2 (Sixth-order) 

Es (Fourth-order) 

Es (Sixth-order) 

E, (Fourth-order) 

Ed (Sixth-order) 

El (Fourth-order) 

E. (Exact) = -178.79850 

- 178.79555 - 178.79850 -178.79853 -178.79853 
(295) (0) (3) (3) 

-178.81052 -178.79924 -178.79866 - 178.79857 
(1202) (74) (16) (7) 

E1 (Exact) = -160.28182 

- 160.25877 -160.28316 - 160.28340 - 160.28342 
(2305) (134) (158) (160) 

-160.35850 - 160.28784 -160.28428 - 160.28368 
(7668) (6w (246) (186) 

Es (Exact) = - 142.77990 

-142.67714 - 142.77902 - 142.77998 - 142.78004 
(10276) (88) 63) (14) 

-143.02059 - 142.79397 - 142.78276 - 142.78090 
(24069) (1407) (286) (100) 

E, (Exact) = - 126.28824 

- 125.99424 - 126.28562 - 126.28821 -126.28840 
(29400) (262) (3) (16) 

-126.83300 -126.31918 -126.29441 -126.29031 
(54476) (4094) (617) (207) 

E4 (Exact) = - 110.80832 

-110.14662 - 110.80258 -110.80809 - 110.80849 
(66170) (574) (23) (17) 

-111.81094 -110.86348 -110.81921 -110.81191 
(1.00272) (5516) (1089) (359) 

a Those computed by the method of this article using the sixth-order Eq. (12) are presented in 
rows indicated by “Sixth-order.” Those computed by Cooley using the fourth-order Eq. (8) are 
indicated by “Fourth-order.” Those computed from the analytic solution are indicated by “Exact”. 
All eigenvalues are computed for different mesh sizes h. Numbers in brackets immediately under 
the eigenvalues are the errors of these eigenvalues (deviations from the exact value). The errors 
are also shown in Fig. I. 
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TABLE II 

Values of the Zeroth Eigenfunction (corresponding to EO) at Different Points r and 
for Different Mesh Sizes ha 
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r Exact 
Sixth-order Fourth-order Fourth-order 

HKN HKN Cooley 

1.2 0.0223746 

1.6 0.4859927 

2.0 1.3101405 

2.4 0.734876 

2.8 0.1265004 

3.2 0.0089541 

1.2 0.0223746 

1.6 0.4859927 

2.0 1.3101405 

2.4 0.7348476 

2.8 0.1265004 

3.2 0.0089541 

Order of convergence 

h = 0.1 

0.0223724 0.0223865 0.0223875 
(22) (119) (129) 

0.4859831 0.4858638 0.4858844 
(96) (1289) (1093) 

1.3100755 1.3102091 1.3102630 
(650) (686) (1225) 

0.7348251 0.7347070 0.7347376 
(225) (1406) ww 

0.1264950 0.1264854 0.1264907 
(54) (150) (97) 

0.0089540 0.0089547 0.0089544 
(1) (7) (3) 

h = 0.05 

0.0223745 0.0223753 0.0223754 
(1) (7) (8) 

0.485993 1 0.4859863 0.4859864 
(4) (24) (23) 

1.3101393 1.3101471 1.3101471 
(12) (66) (66) 

0.7348480 0.7348412 0.7348413 
(4) (64) (63) 

0.1265003 0.1264996 0.1264998 
(1) (8) (6) 

0.0089540 0.0089531 0.0089541 
(1) (10) (0) 

5.8 4.4 4.2 

0 Columns headed “Exact” are computed from the analytic solution; columns headed “Sixth- 
order HKN” and “Fourth-order HKN” are computed by the method of this article using Eq. (12) 
and Eq. (8), respectively. Values computed by Cooley are in the last column. Numbers in brackets 
immediately under the values are the errors of these values (deviations from the exact value). 
The order of convergence is presented in the last row. 
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FIG. 1. The plot of the error of the eigenvalues shown in Table I vs mesh density n = l/h. 
The vertical scale is a logarithmic scale. The errors in the n = 1 eigenvalues are larger than one 
would expect, based on the results for other eigenvalues. This is probably due to a small error 
in the computed “exact” value (taken from Cooley). 

In the above computations, r, ranged from about 4.0 for E,, to about 5.0 for E4 . 
To find the normalization factor, a five-point Newton-Cotes formula was used 
to evaluate the integral, since the error in this formula is about the same order 
as that in (12). 
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